Have you seen the movie Finding Dory yet? In one of the many exciting sequences in the film, the protagonist Dory needs the help of Bailey the humpback whale to navigate through a maze of pipes. In a later, and even more exciting, sequence Bailey helps Dory keep track of a moving truck in which Dory’s friends Nemo and Marlin have become inadvertently captured.
Bailey, the beluga, performs these miracles doing what he does every day – seeing with sound. In fact, Bailey and other toothed whales and dolphins have evolved echolocation skills that are stronger than any man-made sonar. No wonder the movie makers chose to name Bailey’s exhibit “The World’s Most Powerful Pair of Glasses.” Whales and other marine mammals went back to the water and hence their hearing had to re-adopt to hearing under water. Echolocation is one of many interesting things about the auditory system of these species. For example, many of these species can hear up to or even above 100 kHz. But today we are extolling the virtues of echolocation.
Bailey and other marine mammals are not the only animals that use echolocation. Bats and even some cave-swelling birds use sound to see. Bailey and his other toothed whale and dolphin friends, however, have taken echolocation to significant levels of sophistication. The basic principle is the same as in man-made sonar—produce a loud signal and listen for it to bounce back from an obstacle. Basic distance and size estimates of the reflector can then be derived from the characteristics of the reflection.
Just distance and size though are child’s play for the expert whales. Whales and dolphins can not only discern distance and size of the reflecting object; they can differentiate between different shape reflectors. And we are talking about subtle differences here. Whales, working under positive reinforcement of getting a fish on a correct response, can learn to differentiate between a cylindrical and square metal rod a few inches wide. They have also demonstrated the ability to distinguish between reflectors of different textures and estimate the speed of moving objects. In other words, these animals probably do have the world’s most powerful pair of glasses.
So, when a whale produces a click for echolocation, it has no idea how far the click will have to travel before being reflected. So the wise thing to do would be to produce the loudest possible click—and so it does. Would that not put the whale’s hearing in danger? This is part 1 of 3, is it not? More next week.
Enjoy a brief clip on beluga whales and echolocation.
Related Posts
The Utilization of Telehealth Services
During the COVID-19 pandemic, the American Academy of Audiology (2020) provided audiologists with guidance regarding the use of telehealth services. In October 2021, the Academy released a position statement titled The Use of Telehealth for the Delivery of Audiological Services. Members can access this statement here. While the COVID-19 pandemic may have expanded telehealth services,…
Postural Sway Observations in Children with ADHD
Attention Deficit Hyperactivity Disorder (ADHD) affects approximately five percent of the pediatric population. Up to 50 percent of children with ADHD also exhibit motor control and balance issues in addition to the more commonly seen symptoms of hyperactivity, impulsivity and inattention. Fidgeting, poor motor planning, increased postural sway, and difficulty sitting still may be related…
Deaths from Unintentional Falls in Older Adults
At the end of September 2022, the Centers for Disease Control and Prevention (CDC) released data overviewing rates of death resulting from unintentional falls between the years of 1999–2020 by adults 65 years and older (Garnett et al, 2022). The report showed that death rates have increased, with the largest increase seen by those aged…